
Software implementation of Koblitz curves
over quadratic fields

Thomaz Oliveira1, Julio López2 and Francisco Rodŕıguez-Henŕıquez1

1 Computer Science Department, Cinvestav-IPN
2 Institute of Computing, University of Campinas

CHES - Santa Barbara, USA
August 18, 2016

1

Motivation

In this work, we combined the Koblitz curves, which allow an efficient
scalar multiplication through applications of the Frobenius map, with the
quadratic binary field arithmetic, that provides opportunities for
exploiting the vector instructions available in the current 64-bit high-end
architectures, to design a fast 128-bit secure constant-time variable
point multiplication.

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

2

Outline

• Koblitz curves over F2 (brief introduction)

• Koblitz curves over F4

• Implementation
• Base field arithmetic
• Quadratic field arithmetic
• Scalar multiplication
• Summary and results

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

3

Koblitz curves over F2

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

4

Koblitz curves over F2

The anomalous binary curves, generally referred to as Koblitz curves,
are binary elliptic curves proposed for cryptographic use by Neal Koblitz
in 1991.

The Weierstrass form of a Koblitz curve is given by

Ea : y2 + xy = x3 + ax2 + 1, with a ∈ {0, 1}.

Since their introduction, the Koblitz curves have been extensively studied
for their additional structure that allows a performance speedup in the
computation of the scalar multiplication by replacing point doublings
2(P) with the cheaper operation τ(P) where τ is the Frobenius map
τ : Ea → Ea, defined by

τ(O) = O, τ(x , y) = (x2, y2).

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

4

Koblitz curves over F2

The anomalous binary curves, generally referred to as Koblitz curves,
are binary elliptic curves proposed for cryptographic use by Neal Koblitz
in 1991.

The Weierstrass form of a Koblitz curve is given by

Ea : y2 + xy = x3 + ax2 + 1, with a ∈ {0, 1}.

Since their introduction, the Koblitz curves have been extensively studied
for their additional structure that allows a performance speedup in the
computation of the scalar multiplication by replacing point doublings
2(P) with the cheaper operation τ(P) where τ is the Frobenius map
τ : Ea → Ea, defined by

τ(O) = O, τ(x , y) = (x2, y2).

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

4

Koblitz curves over F2

The anomalous binary curves, generally referred to as Koblitz curves,
are binary elliptic curves proposed for cryptographic use by Neal Koblitz
in 1991.

The Weierstrass form of a Koblitz curve is given by

Ea : y2 + xy = x3 + ax2 + 1, with a ∈ {0, 1}.

Since their introduction, the Koblitz curves have been extensively studied
for their additional structure that allows a performance speedup in the
computation of the scalar multiplication by replacing point doublings
2(P) with the cheaper operation τ(P) where τ is the Frobenius map
τ : Ea → Ea, defined by

τ(O) = O, τ(x , y) = (x2, y2).

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

5

Koblitz curves over F2: τ -adic non-adjacent form

Given a Koblitz curve

Ea : y2 + xy = x3 + ax2 + 1,

we define µ = (−1)1−a.

The Frobenius map can be seen as a complex number that satisfies

τ 2 + 2 = µτ.

As a result, we can multiply points in Ea(F2m) by elements in Z[τ] as

(ul−1τ
l−1 + · · ·+ u1τ + u0)P = ul−1τ

l−1(P) + · · ·+ u1τ(P) + u0P.

In 2000, Jerome Solinas presented a method to represent a scalar k in
the form k ′ =

∑l−1
i=0 uiτ

i with l ≈ m + a.

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

5

Koblitz curves over F2: τ -adic non-adjacent form

Given a Koblitz curve

Ea : y2 + xy = x3 + ax2 + 1,

we define µ = (−1)1−a.

The Frobenius map can be seen as a complex number that satisfies

τ 2 + 2 = µτ.

As a result, we can multiply points in Ea(F2m) by elements in Z[τ] as

(ul−1τ
l−1 + · · ·+ u1τ + u0)P = ul−1τ

l−1(P) + · · ·+ u1τ(P) + u0P.

In 2000, Jerome Solinas presented a method to represent a scalar k in
the form k ′ =

∑l−1
i=0 uiτ

i with l ≈ m + a.

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

5

Koblitz curves over F2: τ -adic non-adjacent form

Given a Koblitz curve

Ea : y2 + xy = x3 + ax2 + 1,

we define µ = (−1)1−a.

The Frobenius map can be seen as a complex number that satisfies

τ 2 + 2 = µτ.

As a result, we can multiply points in Ea(F2m) by elements in Z[τ] as

(ul−1τ
l−1 + · · ·+ u1τ + u0)P = ul−1τ

l−1(P) + · · ·+ u1τ(P) + u0P.

In 2000, Jerome Solinas presented a method to represent a scalar k in
the form k ′ =

∑l−1
i=0 uiτ

i with l ≈ m + a.

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

6

Koblitz curves over F2: summary
Koblitz curves allow the substitution of point doublings with applications of the fast
Frobenius map, which results in an efficient scalar multiplication algorithm.
In addition, they provide a rigid curve generation process.

In 2000, the Koblitz curves E1/F2163 (K-163), E0/F2233 (K-233), E0/F2283 (K-283),
E0/F2409 (K-409) and E0/F2571 (K-571) were standardized by the National Institute of
Standards and Technology (NIST) [FIPS 186-2].

However, since the group of points E(F2m) is defined over a prime extension field, its
arithmetic is costly in modern desktops. Furthermore, in order to design a 128-bit
secure point multiplication, we must choose an extension m̃ ∈ {277, 283}. The groups
E(F2m̃) contain prime subgroups of order > 254.

Table: Largest prime E(F2m) subgroup order (bits)
m E0(F2m) E1(F2m)

251 113 200
257 222 163
263 149 74
269 205 181
271 116 194
277 275 263
283 281 282

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

6

Koblitz curves over F2: summary
Koblitz curves allow the substitution of point doublings with applications of the fast
Frobenius map, which results in an efficient scalar multiplication algorithm.
In addition, they provide a rigid curve generation process.

In 2000, the Koblitz curves E1/F2163 (K-163), E0/F2233 (K-233), E0/F2283 (K-283),
E0/F2409 (K-409) and E0/F2571 (K-571) were standardized by the National Institute of
Standards and Technology (NIST) [FIPS 186-2].

However, since the group of points E(F2m) is defined over a prime extension field, its
arithmetic is costly in modern desktops. Furthermore, in order to design a 128-bit
secure point multiplication, we must choose an extension m̃ ∈ {277, 283}. The groups
E(F2m̃) contain prime subgroups of order > 254.

Table: Largest prime E(F2m) subgroup order (bits)
m E0(F2m) E1(F2m)

251 113 200
257 222 163
263 149 74
269 205 181
271 116 194
277 275 263
283 281 282

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

6

Koblitz curves over F2: summary
Koblitz curves allow the substitution of point doublings with applications of the fast
Frobenius map, which results in an efficient scalar multiplication algorithm.
In addition, they provide a rigid curve generation process.

In 2000, the Koblitz curves E1/F2163 (K-163), E0/F2233 (K-233), E0/F2283 (K-283),
E0/F2409 (K-409) and E0/F2571 (K-571) were standardized by the National Institute of
Standards and Technology (NIST) [FIPS 186-2].

However, since the group of points E(F2m) is defined over a prime extension field, its
arithmetic is costly in modern desktops. Furthermore, in order to design a 128-bit
secure point multiplication, we must choose an extension m̃ ∈ {277, 283}. The groups
E(F2m̃) contain prime subgroups of order > 254.

Table: Largest prime E(F2m) subgroup order (bits)
m E0(F2m) E1(F2m)

251 113 200
257 222 163
263 149 74
269 205 181
271 116 194
277 275 263
283 281 282

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

7

Koblitz curves over F4

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

8

Koblitz curves over F4: introduction

The Weierstrass form of a Koblitz curve defined over F4 is given by

Ea : y2 + xy = x3 + aγx2 + γ, with a ∈ {0, 1}.

Here, γ ∈ F4 satisfies γ2 = γ + 1.

The Frobenius map τ : Ea → Ea is defined by

τ(O) = O τ(x , y) = (x4, y4).

Let us consider µ = (−1)a. Then the Frobenius map can be seen as a
complex number that satisfies τ 2 + 4 = µτ .

A Koblitz curve over F4 has almost-prime group if Ea(F4m) = hn, where
n is prime and h = {4, 6}, since #E0(F4) = 4 and #E1(F4) = 6.

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

8

Koblitz curves over F4: introduction

The Weierstrass form of a Koblitz curve defined over F4 is given by

Ea : y2 + xy = x3 + aγx2 + γ, with a ∈ {0, 1}.

Here, γ ∈ F4 satisfies γ2 = γ + 1.

The Frobenius map τ : Ea → Ea is defined by

τ(O) = O τ(x , y) = (x4, y4).

Let us consider µ = (−1)a. Then the Frobenius map can be seen as a
complex number that satisfies τ 2 + 4 = µτ .

A Koblitz curve over F4 has almost-prime group if Ea(F4m) = hn, where
n is prime and h = {4, 6}, since #E0(F4) = 4 and #E1(F4) = 6.

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

8

Koblitz curves over F4: introduction

The Weierstrass form of a Koblitz curve defined over F4 is given by

Ea : y2 + xy = x3 + aγx2 + γ, with a ∈ {0, 1}.

Here, γ ∈ F4 satisfies γ2 = γ + 1.

The Frobenius map τ : Ea → Ea is defined by

τ(O) = O τ(x , y) = (x4, y4).

Let us consider µ = (−1)a. Then the Frobenius map can be seen as a
complex number that satisfies τ 2 + 4 = µτ .

A Koblitz curve over F4 has almost-prime group if Ea(F4m) = hn, where
n is prime and h = {4, 6}, since #E0(F4) = 4 and #E1(F4) = 6.

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

9

Koblitz curves over F4: Ea(F4m) group order
In order to implement an efficient 128-bit secure scalar multiplication in a
64-bit architecture, our base field size should be at most 192 bits (three 64-bit
words). For that reason, we considered primes m ∈ {127, . . . , 191}.

Table: Largest prime E(F4m) subgroup order (bits)
m E0(F4m) E1(F4m)

127 196 209
131 108 205
137 173 181
149 239 255
151 131 140
157 186 224
163 324 189
167 213 331
173 196 308
179 272 196
181 348 131
191 173 362

We selected the group E1(F4149). The factorization of #E1(F4149) is given by

6·1886501744269·44991476563317830182537451551889394335850807098205993761800530540007335546409.

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

9

Koblitz curves over F4: Ea(F4m) group order
In order to implement an efficient 128-bit secure scalar multiplication in a
64-bit architecture, our base field size should be at most 192 bits (three 64-bit
words). For that reason, we considered primes m ∈ {127, . . . , 191}.

Table: Largest prime E(F4m) subgroup order (bits)
m E0(F4m) E1(F4m)

127 196 209
131 108 205
137 173 181
149 239 255
151 131 140
157 186 224
163 324 189
167 213 331
173 196 308
179 272 196
181 348 131
191 173 362

We selected the group E1(F4149). The factorization of #E1(F4149) is given by

6·1886501744269·44991476563317830182537451551889394335850807098205993761800530540007335546409.

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

10

Koblitz curves over F4: τ -adic non-adjacent form

Minor changes are required to adapt Solinas’ algorithm for representing the
scalar k in Z[τ].

Window methods can be implemented by computing a Joye-Tunstall-based
regular recoding. For a given width-w , we need to precompute 2(2w−3) points.

Table: Representations of αv = v mod τw , for w ∈ {2, 3} and curve E1

w v v mod τw αv Operations Order

2 1 1 1 n/a I
3 3 3 t0 ← 2α1, α3 ← t0 + α1 (D + FA) II

3 1 1 1 n/a I
3 3 3 t0 ← 2α1, α3 ← t0 + α1 (D + FA) II
5 5 −τ − α15 α5 ← −t1 − α15 (MA) VIII
7 3τ + 3 τ 2α3 + α3 α7 ← τ 2α3 + α3 (FA + 2T) III
9 3τ + 5 α7 + 2 α9 ← α7 + t0 (FA) IV
11 3τ + 7 α9 + 2 α11 ← α9 + t0 (FA) V
13 −τ − 7 τ 2 − α3 α13 ← t2 − α3 (MA) VII
15 −τ − 5 τ 2 − 1 t1 ← τα1, t2 ← τ t1, α15 ← t2 − α1

(MA + 2T)
VI

Precomputation cost: 1D + 1FA (w = 2), 1D + 4FA + 3MA + 4τ (w = 3),
1D + 20FA + 11MA + 5τ (w = 4).

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

10

Koblitz curves over F4: τ -adic non-adjacent form

Minor changes are required to adapt Solinas’ algorithm for representing the
scalar k in Z[τ].

Window methods can be implemented by computing a Joye-Tunstall-based
regular recoding. For a given width-w , we need to precompute 2(2w−3) points.

Table: Representations of αv = v mod τw , for w ∈ {2, 3} and curve E1

w v v mod τw αv Operations Order

2 1 1 1 n/a I
3 3 3 t0 ← 2α1, α3 ← t0 + α1 (D + FA) II

3 1 1 1 n/a I
3 3 3 t0 ← 2α1, α3 ← t0 + α1 (D + FA) II
5 5 −τ − α15 α5 ← −t1 − α15 (MA) VIII
7 3τ + 3 τ 2α3 + α3 α7 ← τ 2α3 + α3 (FA + 2T) III
9 3τ + 5 α7 + 2 α9 ← α7 + t0 (FA) IV
11 3τ + 7 α9 + 2 α11 ← α9 + t0 (FA) V
13 −τ − 7 τ 2 − α3 α13 ← t2 − α3 (MA) VII
15 −τ − 5 τ 2 − 1 t1 ← τα1, t2 ← τ t1, α15 ← t2 − α1

(MA + 2T)
VI

Precomputation cost: 1D + 1FA (w = 2), 1D + 4FA + 3MA + 4τ (w = 3),
1D + 20FA + 11MA + 5τ (w = 4).

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

10

Koblitz curves over F4: τ -adic non-adjacent form

Minor changes are required to adapt Solinas’ algorithm for representing the
scalar k in Z[τ].

Window methods can be implemented by computing a Joye-Tunstall-based
regular recoding. For a given width-w , we need to precompute 2(2w−3) points.

Table: Representations of αv = v mod τw , for w ∈ {2, 3} and curve E1

w v v mod τw αv Operations Order

2 1 1 1 n/a I
3 3 3 t0 ← 2α1, α3 ← t0 + α1 (D + FA) II

3 1 1 1 n/a I
3 3 3 t0 ← 2α1, α3 ← t0 + α1 (D + FA) II
5 5 −τ − α15 α5 ← −t1 − α15 (MA) VIII
7 3τ + 3 τ 2α3 + α3 α7 ← τ 2α3 + α3 (FA + 2T) III
9 3τ + 5 α7 + 2 α9 ← α7 + t0 (FA) IV
11 3τ + 7 α9 + 2 α11 ← α9 + t0 (FA) V
13 −τ − 7 τ 2 − α3 α13 ← t2 − α3 (MA) VII
15 −τ − 5 τ 2 − 1 t1 ← τα1, t2 ← τ t1, α15 ← t2 − α1

(MA + 2T)
VI

Precomputation cost: 1D + 1FA (w = 2), 1D + 4FA + 3MA + 4τ (w = 3),
1D + 20FA + 11MA + 5τ (w = 4).

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

11

Koblitz curves over F4: summary

Koblitz curves over F4 combine the effectiveness of the Frobenius map
with the parallelism opportunities offered by the quadratic fields.

Contrary to Koblitz curves over F2, here we have a prime subgroup order
of 255 bits, which is suitable for implementing a 128-bit secure scalar
multiplication.

Nevertheless, we must consider more carefully the width w of the window
methods, since it could result in a costly pre-/post-computation overhead.

Also, the Frobenius map is more expensive (six F4m squarings in
projective coordinates).

Besides that, to avoid timing attacks, we must not compute the map via
look-up tables in the left-to-right point multiplication method.

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

11

Koblitz curves over F4: summary

Koblitz curves over F4 combine the effectiveness of the Frobenius map
with the parallelism opportunities offered by the quadratic fields.

Contrary to Koblitz curves over F2, here we have a prime subgroup order
of 255 bits, which is suitable for implementing a 128-bit secure scalar
multiplication.

Nevertheless, we must consider more carefully the width w of the window
methods, since it could result in a costly pre-/post-computation overhead.

Also, the Frobenius map is more expensive (six F4m squarings in
projective coordinates).

Besides that, to avoid timing attacks, we must not compute the map via
look-up tables in the left-to-right point multiplication method.

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

11

Koblitz curves over F4: summary

Koblitz curves over F4 combine the effectiveness of the Frobenius map
with the parallelism opportunities offered by the quadratic fields.

Contrary to Koblitz curves over F2, here we have a prime subgroup order
of 255 bits, which is suitable for implementing a 128-bit secure scalar
multiplication.

Nevertheless, we must consider more carefully the width w of the window
methods, since it could result in a costly pre-/post-computation overhead.

Also, the Frobenius map is more expensive (six F4m squarings in
projective coordinates).

Besides that, to avoid timing attacks, we must not compute the map via
look-up tables in the left-to-right point multiplication method.

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

11

Koblitz curves over F4: summary

Koblitz curves over F4 combine the effectiveness of the Frobenius map
with the parallelism opportunities offered by the quadratic fields.

Contrary to Koblitz curves over F2, here we have a prime subgroup order
of 255 bits, which is suitable for implementing a 128-bit secure scalar
multiplication.

Nevertheless, we must consider more carefully the width w of the window
methods, since it could result in a costly pre-/post-computation overhead.

Also, the Frobenius map is more expensive (six F4m squarings in
projective coordinates).

Besides that, to avoid timing attacks, we must not compute the map via
look-up tables in the left-to-right point multiplication method.

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

12

Implementation

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

13

Implementation: preliminaries

Our code was designed for 64-bit platforms provided with SSE4.1 vector
instructions and a 64-bit carry-less multiplier. The benchmarking was
performed in an Intel Core i7 4770k 3.50 GHz machine (Haswell
architecture) with the TurboBoost and HyperThreading technologies
disabled.

The library was coded with GNU11 C and Assembly. For the sake of
comparison, our code was compiled with different systems: gcc 5.3,
6.1, clang 3.5, 3.8.

In addition, the code was compiled with the flags -O3

-march=core-avx2 -fomit-frame-pointer.

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

13

Implementation: preliminaries

Our code was designed for 64-bit platforms provided with SSE4.1 vector
instructions and a 64-bit carry-less multiplier. The benchmarking was
performed in an Intel Core i7 4770k 3.50 GHz machine (Haswell
architecture) with the TurboBoost and HyperThreading technologies
disabled.

The library was coded with GNU11 C and Assembly. For the sake of
comparison, our code was compiled with different systems: gcc 5.3,
6.1, clang 3.5, 3.8.

In addition, the code was compiled with the flags -O3

-march=core-avx2 -fomit-frame-pointer.

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

14

Implementation: base field arithmetic

In order to implement an efficient field arithmetic, we must select an
irreducible polynomial to construct the binary extension field F2149 .
This polynomial should allow a fast modular reduction.

There are no trinomials of degree 149 irreducible over F2.

We found 9680 irreducible pentanomials. However, those polynomials
make the shift-and-add modular reduction too costly.

xm + xa + xb + xc + 1

Cost: four xors (min), twelve xors and sixteen shifts (max) per
shift-and-add reduction step, depending on the values of m, a, b, c .

The number of reduction steps (after a field multiplication or squaring) is

determined by the value

⌈
2m

m − a

⌉
.

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

14

Implementation: base field arithmetic

In order to implement an efficient field arithmetic, we must select an
irreducible polynomial to construct the binary extension field F2149 .
This polynomial should allow a fast modular reduction.

There are no trinomials of degree 149 irreducible over F2.

We found 9680 irreducible pentanomials. However, those polynomials
make the shift-and-add modular reduction too costly.

xm + xa + xb + xc + 1

Cost: four xors (min), twelve xors and sixteen shifts (max) per
shift-and-add reduction step, depending on the values of m, a, b, c .

The number of reduction steps (after a field multiplication or squaring) is

determined by the value

⌈
2m

m − a

⌉
.

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

14

Implementation: base field arithmetic

In order to implement an efficient field arithmetic, we must select an
irreducible polynomial to construct the binary extension field F2149 .
This polynomial should allow a fast modular reduction.

There are no trinomials of degree 149 irreducible over F2.

We found 9680 irreducible pentanomials. However, those polynomials
make the shift-and-add modular reduction too costly.

xm + xa + xb + xc + 1

Cost: four xors (min), twelve xors and sixteen shifts (max) per
shift-and-add reduction step, depending on the values of m, a, b, c .

The number of reduction steps (after a field multiplication or squaring) is

determined by the value

⌈
2m

m − a

⌉
.

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

14

Implementation: base field arithmetic

In order to implement an efficient field arithmetic, we must select an
irreducible polynomial to construct the binary extension field F2149 .
This polynomial should allow a fast modular reduction.

There are no trinomials of degree 149 irreducible over F2.

We found 9680 irreducible pentanomials. However, those polynomials
make the shift-and-add modular reduction too costly.

xm + xa + xb + xc + 1

Cost: four xors (min), twelve xors and sixteen shifts (max) per
shift-and-add reduction step, depending on the values of m, a, b, c .

The number of reduction steps (after a field multiplication or squaring) is

determined by the value

⌈
2m

m − a

⌉
.

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

15

Implementation: redundant trinomials

As a result, we resorted to the redundant trinomial strategy introduced
by Brent, Zimmermann (2003) and Doche (2005).

The basic idea is to find a non-irreducible trinomial g(x) which factorizes
into an irreducible polynomial f (x) of the desirable degree m. The field
F2m is isomorphic to F2[x]/(f (x)) and we can perform its arithmetic
modulo g(x).

In the case of elliptic curves, we can perform the operations on point
coordinates modulo g(x) and, at the end of the scalar multiplication, we
reduce the result point (Q = kP) coordinates modulo f (x).

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

15

Implementation: redundant trinomials

As a result, we resorted to the redundant trinomial strategy introduced
by Brent, Zimmermann (2003) and Doche (2005).

The basic idea is to find a non-irreducible trinomial g(x) which factorizes
into an irreducible polynomial f (x) of the desirable degree m. The field
F2m is isomorphic to F2[x]/(f (x)) and we can perform its arithmetic
modulo g(x).

In the case of elliptic curves, we can perform the operations on point
coordinates modulo g(x) and, at the end of the scalar multiplication, we
reduce the result point (Q = kP) coordinates modulo f (x).

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

15

Implementation: redundant trinomials

As a result, we resorted to the redundant trinomial strategy introduced
by Brent, Zimmermann (2003) and Doche (2005).

The basic idea is to find a non-irreducible trinomial g(x) which factorizes
into an irreducible polynomial f (x) of the desirable degree m. The field
F2m is isomorphic to F2[x]/(f (x)) and we can perform its arithmetic
modulo g(x).

In the case of elliptic curves, we can perform the operations on point
coordinates modulo g(x) and, at the end of the scalar multiplication, we
reduce the result point (Q = kP) coordinates modulo f (x).

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

16

Implementation: redundant trinomials

Since our target architecture is provided with a 64-bit carry-less
multiplier, we searched for trinomials up to degree 192 (three 64-bit
words).

We chose the trinomial x192 + x19 + 1, which factorizes into a 69-term
irreducible polynomial f (x) of degree 149:

f (x) =x149 + x146 + x143 + x141 + x140 + x139 + x138 + x137 + x129 + x123 + x122+

x121 + x119 + x117 + x114 + x113 + x111 + x108 + x107 + x106 + x105 + x99+

x94 + x92 + x91 + x90 + x86 + x85 + x83 + x81 + x80 + x78 + x77 + x75+

x71 + x70 + x68 + x67 + x65 + x64 + x63 + x54 + x53 + x51 + x49 + x48+

x43 + x42 + x41 + x40 + x39 + x38 + x37 + x35 + x28 + x26 + x23 + x18+

x17 + x16 + x15 + x12 + x11 + x10 + x9 + x3 + x2 + x + 1.

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

16

Implementation: redundant trinomials

Since our target architecture is provided with a 64-bit carry-less
multiplier, we searched for trinomials up to degree 192 (three 64-bit
words).

We chose the trinomial x192 + x19 + 1, which factorizes into a 69-term
irreducible polynomial f (x) of degree 149:

f (x) =x149 + x146 + x143 + x141 + x140 + x139 + x138 + x137 + x129 + x123 + x122+

x121 + x119 + x117 + x114 + x113 + x111 + x108 + x107 + x106 + x105 + x99+

x94 + x92 + x91 + x90 + x86 + x85 + x83 + x81 + x80 + x78 + x77 + x75+

x71 + x70 + x68 + x67 + x65 + x64 + x63 + x54 + x53 + x51 + x49 + x48+

x43 + x42 + x41 + x40 + x39 + x38 + x37 + x35 + x28 + x26 + x23 + x18+

x17 + x16 + x15 + x12 + x11 + x10 + x9 + x3 + x2 + x + 1.

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

17

Implementation: redundant trinomials

The polynomial x192 + x19 + 1 offers us the following advantages:

• The difference 192− 19 = 173 > 128 allow us to perform the
shift-and-add reduction in just two steps, since we perform it
through 128-bit SSE vector instructions.

• Since 192 mod 64 = 0, the amount of shifts during a shift-and-add
step can be reduced.

At the end of the scalar multiplication algorithm, we must reduce
polynomials of degree 191 modulo f (x).

Because f (x) is a 69-term polynomial, this reduction is more efficiently
performed via the mul-and-add reduction method. The total cost of this
final reduction is 460cc (about 7.53 multiplications in F4149).

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

17

Implementation: redundant trinomials

The polynomial x192 + x19 + 1 offers us the following advantages:

• The difference 192− 19 = 173 > 128 allow us to perform the
shift-and-add reduction in just two steps, since we perform it
through 128-bit SSE vector instructions.

• Since 192 mod 64 = 0, the amount of shifts during a shift-and-add
step can be reduced.

At the end of the scalar multiplication algorithm, we must reduce
polynomials of degree 191 modulo f (x).

Because f (x) is a 69-term polynomial, this reduction is more efficiently
performed via the mul-and-add reduction method. The total cost of this
final reduction is 460cc (about 7.53 multiplications in F4149).

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

17

Implementation: redundant trinomials

The polynomial x192 + x19 + 1 offers us the following advantages:

• The difference 192− 19 = 173 > 128 allow us to perform the
shift-and-add reduction in just two steps, since we perform it
through 128-bit SSE vector instructions.

• Since 192 mod 64 = 0, the amount of shifts during a shift-and-add
step can be reduced.

At the end of the scalar multiplication algorithm, we must reduce
polynomials of degree 191 modulo f (x).

Because f (x) is a 69-term polynomial, this reduction is more efficiently
performed via the mul-and-add reduction method. The total cost of this
final reduction is 460cc (about 7.53 multiplications in F4149).

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

18

Implementation: quadratic field arithmetic

The quadratic field F22·149
∼= F2149 [u]/(h(u)) was constructed with the

degree two monic trinomial h(u) = u2 + u + 1.

Let us consider an element a = (a0 + a1u) ∈ F22·149 .

The terms,
a0 = C · x128 + B · x64 + A

and
a1 = C’ · x128 + B’ · x64 + A’

are 192-bit polynomials, stored into six 64-bit words (A-C, A’-C’).

Also, let us have three 128-bit registers Ri, with i ∈ {0, 1, 2}, which can
store two 64-bit words each.

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

18

Implementation: quadratic field arithmetic

The quadratic field F22·149
∼= F2149 [u]/(h(u)) was constructed with the

degree two monic trinomial h(u) = u2 + u + 1.

Let us consider an element a = (a0 + a1u) ∈ F22·149 .

The terms,
a0 = C · x128 + B · x64 + A

and
a1 = C’ · x128 + B’ · x64 + A’

are 192-bit polynomials, stored into six 64-bit words (A-C, A’-C’).

Also, let us have three 128-bit registers Ri, with i ∈ {0, 1, 2}, which can
store two 64-bit words each.

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

18

Implementation: quadratic field arithmetic

The quadratic field F22·149
∼= F2149 [u]/(h(u)) was constructed with the

degree two monic trinomial h(u) = u2 + u + 1.

Let us consider an element a = (a0 + a1u) ∈ F22·149 .

The terms,
a0 = C · x128 + B · x64 + A

and
a1 = C’ · x128 + B’ · x64 + A’

are 192-bit polynomials, stored into six 64-bit words (A-C, A’-C’).

Also, let us have three 128-bit registers Ri, with i ∈ {0, 1, 2}, which can
store two 64-bit words each.

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

19

Implementation: quadratic field arithmetic
Reminder: a0 = C · x128 + B · x64 + A and a1 = C’ · x128 + B’ · x64 + A’.

The usual way to store the 384-bit element a = (a0 + a1u) is,

R0 = B|A, R1 = A’|C, R2 = C’|B’.

However, after a 192-bit polynomial multiplication, we have a 384-bit element

c = F · x320 + E · x256 + D · x192 + C · x128 + B · x64 + A

which is stored into three 128-bit registers. Then, one step of the shift-and-add
reduction is depicted as,

Cost: (6 shifts + 5 xor) × 2 steps × 2 384-bit elem. = 24 shifts + 20 xors.

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

19

Implementation: quadratic field arithmetic
Reminder: a0 = C · x128 + B · x64 + A and a1 = C’ · x128 + B’ · x64 + A’.

The usual way to store the 384-bit element a = (a0 + a1u) is,

R0 = B|A, R1 = A’|C, R2 = C’|B’.

However, after a 192-bit polynomial multiplication, we have a 384-bit element

c = F · x320 + E · x256 + D · x192 + C · x128 + B · x64 + A

which is stored into three 128-bit registers. Then, one step of the shift-and-add
reduction is depicted as,

Cost: (6 shifts + 5 xor) × 2 steps × 2 384-bit elem. = 24 shifts + 20 xors.

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

19

Implementation: quadratic field arithmetic
Reminder: a0 = C · x128 + B · x64 + A and a1 = C’ · x128 + B’ · x64 + A’.

The usual way to store the 384-bit element a = (a0 + a1u) is,

R0 = B|A, R1 = A’|C, R2 = C’|B’.

However, after a 192-bit polynomial multiplication, we have a 384-bit element

c = F · x320 + E · x256 + D · x192 + C · x128 + B · x64 + A

which is stored into three 128-bit registers. Then, one step of the shift-and-add
reduction is depicted as,

Cost: (6 shifts + 5 xor) × 2 steps × 2 384-bit elem. = 24 shifts + 20 xors.

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

19

Implementation: quadratic field arithmetic
Reminder: a0 = C · x128 + B · x64 + A and a1 = C’ · x128 + B’ · x64 + A’.

The usual way to store the 384-bit element a = (a0 + a1u) is,

R0 = B|A, R1 = A’|C, R2 = C’|B’.

However, after a 192-bit polynomial multiplication, we have a 384-bit element

c = F · x320 + E · x256 + D · x192 + C · x128 + B · x64 + A

which is stored into three 128-bit registers. Then, one step of the shift-and-add
reduction is depicted as,

Cost: (6 shifts + 5 xor) × 2 steps × 2 384-bit elem. = 24 shifts + 20 xors.

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

20

Implementation: interleaving
Reminder: a0 = C · x128 + B · x64 + A and a1 = C’ · x128 + B’ · x64 + A’.

If we consider the interleaving approach, we store the 384-bit element
a = (a0 + a1u) as,

R0 = A|A’, R1 = B|B’, R2 = C|C’.

Then, after the quadratic field multiplication, we have two 384-bit elements

c = F · x320 + E · x256 + D · x192 + C · x128 + B · x64 + A

and
d = F’ · x320 + E‘ · x256 + D’ · x192 + C’ · x128 + B’ · x64 + A’

grouped together, and one step of the shift-and-add reduction is depicted as,

Cost: (3 shifts + 3 xor) × 3 steps × 1 384-bit grouped polys = 9 shifts + 9 xors.

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

20

Implementation: interleaving
Reminder: a0 = C · x128 + B · x64 + A and a1 = C’ · x128 + B’ · x64 + A’.

If we consider the interleaving approach, we store the 384-bit element
a = (a0 + a1u) as,

R0 = A|A’, R1 = B|B’, R2 = C|C’.

Then, after the quadratic field multiplication, we have two 384-bit elements

c = F · x320 + E · x256 + D · x192 + C · x128 + B · x64 + A

and
d = F’ · x320 + E‘ · x256 + D’ · x192 + C’ · x128 + B’ · x64 + A’

grouped together, and one step of the shift-and-add reduction is depicted as,

Cost: (3 shifts + 3 xor) × 3 steps × 1 384-bit grouped polys = 9 shifts + 9 xors.

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

20

Implementation: interleaving
Reminder: a0 = C · x128 + B · x64 + A and a1 = C’ · x128 + B’ · x64 + A’.

If we consider the interleaving approach, we store the 384-bit element
a = (a0 + a1u) as,

R0 = A|A’, R1 = B|B’, R2 = C|C’.

Then, after the quadratic field multiplication, we have two 384-bit elements

c = F · x320 + E · x256 + D · x192 + C · x128 + B · x64 + A

and
d = F’ · x320 + E‘ · x256 + D’ · x192 + C’ · x128 + B’ · x64 + A’

grouped together, and one step of the shift-and-add reduction is depicted as,

Cost: (3 shifts + 3 xor) × 3 steps × 1 384-bit grouped polys = 9 shifts + 9 xors.

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

20

Implementation: interleaving
Reminder: a0 = C · x128 + B · x64 + A and a1 = C’ · x128 + B’ · x64 + A’.

If we consider the interleaving approach, we store the 384-bit element
a = (a0 + a1u) as,

R0 = A|A’, R1 = B|B’, R2 = C|C’.

Then, after the quadratic field multiplication, we have two 384-bit elements

c = F · x320 + E · x256 + D · x192 + C · x128 + B · x64 + A

and
d = F’ · x320 + E‘ · x256 + D’ · x192 + C’ · x128 + B’ · x64 + A’

grouped together, and one step of the shift-and-add reduction is depicted as,

Cost: (3 shifts + 3 xor) × 3 steps × 1 384-bit grouped polys = 9 shifts + 9 xors.

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

21

Implementation: interleaving

The modular reduction algorithm can be optimized by grouping registers which
are shifted by the same value. As a result, we designed a reduction that costs 6
shifts and 9 xors.

Algorithm Reduction of the terms a0, a1 of an element a ∈ F22·149 modulo g(x) = x192 + x19 + 1

1: R8 ← R2 ⊕ R5

2: R7 ← R1 ⊕ R4

3: R8 ← R8 ⊕ (R5 � 19)
4: R7 ← R7 ⊕ (R4 � 19)
5: R8 ← R8 ⊕ (R4 � 45)

6: R7 ← R7 ⊕ (R3 � 19)
7: R6 ← R3 ⊕ (R5 � 45)
8: R6 ← R6 ⊕ (R6 � 19)
9: R6 ← R6 ⊕ R0

In addition, the interleaved representation allows savings in the precomputing
phase of the Karatsuba algorithm. The drawback of this strategy is the
required register reorganization after performing the field multiplication and
squaring. However, this penalty is negligible when compared to the savings in
the modular reduction algorithm.

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

21

Implementation: interleaving

The modular reduction algorithm can be optimized by grouping registers which
are shifted by the same value. As a result, we designed a reduction that costs 6
shifts and 9 xors.

Algorithm Reduction of the terms a0, a1 of an element a ∈ F22·149 modulo g(x) = x192 + x19 + 1

1: R8 ← R2 ⊕ R5

2: R7 ← R1 ⊕ R4

3: R8 ← R8 ⊕ (R5 � 19)
4: R7 ← R7 ⊕ (R4 � 19)
5: R8 ← R8 ⊕ (R4 � 45)

6: R7 ← R7 ⊕ (R3 � 19)
7: R6 ← R3 ⊕ (R5 � 45)
8: R6 ← R6 ⊕ (R6 � 19)
9: R6 ← R6 ⊕ R0

In addition, the interleaved representation allows savings in the precomputing
phase of the Karatsuba algorithm. The drawback of this strategy is the
required register reorganization after performing the field multiplication and
squaring. However, this penalty is negligible when compared to the savings in
the modular reduction algorithm.

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

21

Implementation: interleaving

The modular reduction algorithm can be optimized by grouping registers which
are shifted by the same value. As a result, we designed a reduction that costs 6
shifts and 9 xors.

Algorithm Reduction of the terms a0, a1 of an element a ∈ F22·149 modulo g(x) = x192 + x19 + 1

1: R8 ← R2 ⊕ R5

2: R7 ← R1 ⊕ R4

3: R8 ← R8 ⊕ (R5 � 19)
4: R7 ← R7 ⊕ (R4 � 19)
5: R8 ← R8 ⊕ (R4 � 45)

6: R7 ← R7 ⊕ (R3 � 19)
7: R6 ← R3 ⊕ (R5 � 45)
8: R6 ← R6 ⊕ (R6 � 19)
9: R6 ← R6 ⊕ R0

In addition, the interleaved representation allows savings in the precomputing
phase of the Karatsuba algorithm. The drawback of this strategy is the
required register reorganization after performing the field multiplication and
squaring. However, this penalty is negligible when compared to the savings in
the modular reduction algorithm.

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

22

Implementation: field arithmetic timings

Table: Field F22·149 arithmetic timings (in clock cycles)

Compilers Multiplication Squaring
Multisqr.

Inversion
Reduction

F2149 modulo f (x)

GCC 5.3 52 20 100 2,392 452
GCC 6.1 52 20 104 2,216 452
clang 3.5 64 24 100 1,920 452
clang 3.8 60 20 96 1,894 452

Table: The ratio between the field F22·149 arithmetic
and multiplication timings

Operations Squaring Multisqr. F2149 Inversion
Reduction

modulo f (x)

operation /
0.33 1.60 31.56 7.53

multiplication

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

23

Implementation: point arithmetic timings

Table: E1(F22·149) arithmetic timings (in clock cycles)

Compilers
Full Mixed Full Mixed τ endomorphism

Addition Addition Doubling Doubling 2 coord. 3 coord.

GCC 5.3 792 592 372 148 80 120
GCC 6.1 796 588 368 148 80 120
clang 3.5 768 580 404 164 84 124
clang 3.8 752 564 384 160 84 120

Table: The ratio between the E1(F22·149) arithmetic
and the field multiplication timings

Operations
Full Mixed Full Mixed τ endomorphism

Addition Addition Doubling Doubling 2 coord. 3 coord.

operation /
12.53 9.39 6.40 2.66 1.40 2.00

multiplication

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

24

Implementation: scalar multiplication

Given the Koblitz curve

E1/F4 : y2 + xy = x3 + ax2 + a

with a = u, and its group of points E1(F22·149) which contains a prime
subgroup of order ≈ 255 bits, we implemented a constant-time
w-τNAF left-to-right and right-to-left τ -and-add scalar
multiplication algorithms.

Because of the number of points to be pre- (left-and-right approach) or
post- (right-to-left approach) computed, we implemented window widths
w ∈ {2, 3, 4}.

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

25

Implementation: scalar multiplication timings

Table: Support functions timings (in clock cycles)

Compilers
Regular recoding Linear pass

w=2 w=3 w=4 w=2 w=3 w=4

GCC 5.3 1,656 2,740 2,516 8 40 240
GCC 6.1 1,792 2,688 2,480 8 44 240
clang 3.5 1,804 2,680 2,396 8 44 272
clang 3.8 1,808 2,704 2,376 8 40 264

Table: Scalar multiplication timings (in clock cycles)

Compilers
Right-to-Left Left-to-Right

w=2 w=3 w=4 w=2 w=3 w=4

GCC 5.3 98,332 78,248 134,420 100,480 72,556 90,020
GCC 6.1 97,356 79,044 134,152 99,456 71,728 89,740
clang 3.5 93,260 75,812 140,992 96,812 69,696 86,632
clang 3.8 93,392 77,188 126,032 95,196 68,980 85,244

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

26

Implementation: summary
The redundant trinomials and interleaving techniques were crucial for achieving
our scalar multiplication timings.

In addition, the subgroup size allowed us to compute the 128-bit secure point
multiplication with an optimal number of τ -and-add iterations.

Besides being more expensive in the F4 case, the Frobenius map is still
efficient, costing less than a third of a point doubling operation.

The main drawback is the number of points generated by the regular recoding
in the F4 case. The overhead generated by the linear passes and the pre-/post-
point computation prevented us from selecting a more agressive value for the
window width w .

Table: Pre- and post-computation timings (in clock cycles)
Right-to-left Left-to-right

w=2 w=3 w=4 w=2 w=3 w=4

pre-/post- comp. cost 3408 13360 49960 3732 9832 32816
% of sc. mult. 3.6 17.3 39.6 3.9 14.2 38.5

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

26

Implementation: summary
The redundant trinomials and interleaving techniques were crucial for achieving
our scalar multiplication timings.

In addition, the subgroup size allowed us to compute the 128-bit secure point
multiplication with an optimal number of τ -and-add iterations.

Besides being more expensive in the F4 case, the Frobenius map is still
efficient, costing less than a third of a point doubling operation.

The main drawback is the number of points generated by the regular recoding
in the F4 case. The overhead generated by the linear passes and the pre-/post-
point computation prevented us from selecting a more agressive value for the
window width w .

Table: Pre- and post-computation timings (in clock cycles)
Right-to-left Left-to-right

w=2 w=3 w=4 w=2 w=3 w=4

pre-/post- comp. cost 3408 13360 49960 3732 9832 32816
% of sc. mult. 3.6 17.3 39.6 3.9 14.2 38.5

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

26

Implementation: summary
The redundant trinomials and interleaving techniques were crucial for achieving
our scalar multiplication timings.

In addition, the subgroup size allowed us to compute the 128-bit secure point
multiplication with an optimal number of τ -and-add iterations.

Besides being more expensive in the F4 case, the Frobenius map is still
efficient, costing less than a third of a point doubling operation.

The main drawback is the number of points generated by the regular recoding
in the F4 case. The overhead generated by the linear passes and the pre-/post-
point computation prevented us from selecting a more agressive value for the
window width w .

Table: Pre- and post-computation timings (in clock cycles)
Right-to-left Left-to-right

w=2 w=3 w=4 w=2 w=3 w=4

pre-/post- comp. cost 3408 13360 49960 3732 9832 32816
% of sc. mult. 3.6 17.3 39.6 3.9 14.2 38.5

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

26

Implementation: summary
The redundant trinomials and interleaving techniques were crucial for achieving
our scalar multiplication timings.

In addition, the subgroup size allowed us to compute the 128-bit secure point
multiplication with an optimal number of τ -and-add iterations.

Besides being more expensive in the F4 case, the Frobenius map is still
efficient, costing less than a third of a point doubling operation.

The main drawback is the number of points generated by the regular recoding
in the F4 case. The overhead generated by the linear passes and the pre-/post-
point computation prevented us from selecting a more agressive value for the
window width w .

Table: Pre- and post-computation timings (in clock cycles)
Right-to-left Left-to-right

w=2 w=3 w=4 w=2 w=3 w=4

pre-/post- comp. cost 3408 13360 49960 3732 9832 32816
% of sc. mult. 3.6 17.3 39.6 3.9 14.2 38.5

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

27

Implementation: comparison

Table: 128-bit secure scalar multiplication timings (in clock cycles), Haswell platform
Curve/Method Timings

Koblitz over F2283 (τ -and-add, 5-τNAF [Oliveira et al., 2014]) 99,000
GLS over F22·127 (double-and-add, 5-NAF [Oliveira et al., 2016]) 48,3001

Twisted Edwards over F(2127−1)2 (double-and-add [Costello and Longa, 2015]) 56,000

Kummer genus-2 over F2127−1 (Kummer ladder [Bernstein et al., 2014]) 60,556

Koblitz over F4149 (left-to-right τ -and-add, 2-τNAF (this work)) 96,822
Koblitz over F4149 (left-to-right τ -and-add, 3-τNAF (this work)) 69,656
Koblitz over F4149 (left-to-right τ -and-add, 4-τNAF (this work)) 85,244
1 New result to be announced in the CHES rump session

Our 3-τNAF left-to-right implementation is the fastest implementation of a
128-bit secure scalar multiplication on a Koblitz curve, surpassing the work of
Oliveira et al. by 29.6%.

In addition, it is competitive to other 128-bit secure point multiplication
implementations on binary and prime curves.

Skylake timings (left-to-right): 71,138 (w=2), 51,788 (w=3), 66,286 (w=4).

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

27

Implementation: comparison

Table: 128-bit secure scalar multiplication timings (in clock cycles), Haswell platform
Curve/Method Timings

Koblitz over F2283 (τ -and-add, 5-τNAF [Oliveira et al., 2014]) 99,000
GLS over F22·127 (double-and-add, 5-NAF [Oliveira et al., 2016]) 48,3001

Twisted Edwards over F(2127−1)2 (double-and-add [Costello and Longa, 2015]) 56,000

Kummer genus-2 over F2127−1 (Kummer ladder [Bernstein et al., 2014]) 60,556

Koblitz over F4149 (left-to-right τ -and-add, 2-τNAF (this work)) 96,822
Koblitz over F4149 (left-to-right τ -and-add, 3-τNAF (this work)) 69,656
Koblitz over F4149 (left-to-right τ -and-add, 4-τNAF (this work)) 85,244
1 New result to be announced in the CHES rump session

Our 3-τNAF left-to-right implementation is the fastest implementation of a
128-bit secure scalar multiplication on a Koblitz curve, surpassing the work of
Oliveira et al. by 29.6%.

In addition, it is competitive to other 128-bit secure point multiplication
implementations on binary and prime curves.

Skylake timings (left-to-right): 71,138 (w=2), 51,788 (w=3), 66,286 (w=4).

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

27

Implementation: comparison

Table: 128-bit secure scalar multiplication timings (in clock cycles), Haswell platform
Curve/Method Timings

Koblitz over F2283 (τ -and-add, 5-τNAF [Oliveira et al., 2014]) 99,000
GLS over F22·127 (double-and-add, 5-NAF [Oliveira et al., 2016]) 48,3001

Twisted Edwards over F(2127−1)2 (double-and-add [Costello and Longa, 2015]) 56,000

Kummer genus-2 over F2127−1 (Kummer ladder [Bernstein et al., 2014]) 60,556

Koblitz over F4149 (left-to-right τ -and-add, 2-τNAF (this work)) 96,822
Koblitz over F4149 (left-to-right τ -and-add, 3-τNAF (this work)) 69,656
Koblitz over F4149 (left-to-right τ -and-add, 4-τNAF (this work)) 85,244
1 New result to be announced in the CHES rump session

Our 3-τNAF left-to-right implementation is the fastest implementation of a
128-bit secure scalar multiplication on a Koblitz curve, surpassing the work of
Oliveira et al. by 29.6%.

In addition, it is competitive to other 128-bit secure point multiplication
implementations on binary and prime curves.

Skylake timings (left-to-right): 71,138 (w=2), 51,788 (w=3), 66,286 (w=4).

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

27

Implementation: comparison

Table: 128-bit secure scalar multiplication timings (in clock cycles), Haswell platform
Curve/Method Timings

Koblitz over F2283 (τ -and-add, 5-τNAF [Oliveira et al., 2014]) 99,000
GLS over F22·127 (double-and-add, 5-NAF [Oliveira et al., 2016]) 48,3001

Twisted Edwards over F(2127−1)2 (double-and-add [Costello and Longa, 2015]) 56,000

Kummer genus-2 over F2127−1 (Kummer ladder [Bernstein et al., 2014]) 60,556

Koblitz over F4149 (left-to-right τ -and-add, 2-τNAF (this work)) 96,822
Koblitz over F4149 (left-to-right τ -and-add, 3-τNAF (this work)) 69,656
Koblitz over F4149 (left-to-right τ -and-add, 4-τNAF (this work)) 85,244
1 New result to be announced in the CHES rump session

Our 3-τNAF left-to-right implementation is the fastest implementation of a
128-bit secure scalar multiplication on a Koblitz curve, surpassing the work of
Oliveira et al. by 29.6%.

In addition, it is competitive to other 128-bit secure point multiplication
implementations on binary and prime curves.

Skylake timings (left-to-right): 71,138 (w=2), 51,788 (w=3), 66,286 (w=4).

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

28

Thank you!
Any questions?

Software implementation of Koblitz curves over quadratic fields Oliveira, López and Rodŕıguez-Henŕıquez

